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A computational study of the spatial instability of planar Poiseuille
flow is presented. A fourth-order finite difference with a fully implicit
time-marching scheme is developed on a staggered grid. A semi-coars-
ening multigrid method is applied to accelerate convergence for the
implicit scheme at each time step and a line distributive relaxation is
developed as a fast solver, which is very robust and efficient for
anisotropic grids. A new treatment for outflow boundary conditions
makes the buffer area as short as one wavelength. The computational
results demonstrate high accuracy in terms of agreement with linear
theory and excellent efficiency in the sense that cost is comparabie to
{and usually less than) explicit schemes. € 1993 Academic Press, Inc.

L INTRODUCTION

Developing an understanding of llow transition at high
Reynolds number has been a central problem in the theory
of fluid motion for over a century. It also has great practicai
interest. The present work was motivated by the need to
develop efficient and accurate Navier-Stokes solvers for
spatially evolving stability and transition problems in wall-
bounded flows. An computationally efficient temporal
approach {17, which follows the time evolution of a single
wavelength of the disturbance, has been widely applied to
simulate the transition process. A very eflicient multigrid
finite volume scheme has been developed by C. Liu er al. (cf.
[2—47]} that achieves very good agreement with linear
theory for temporal evolution induced by small disturban-
ces. However, the temporal mode] requires the assumption
of streamwise periodicity and approximate paraliel flow,
which is unrealistic in the case of boundary layers. There-
fore, as transition in channel and boundary layer low is
evolving in the streamwise direction, it is natural to simulate
this process with a spatial approach that incorporates
a more realistic-sized channel. The present work uses
multigrid methods and high-order differences to simulate
spatially evolving flows in a planar channcl,

The accurate Navier-Stokes solver for tracking the
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spatial evolution of a disturbance field has scveraf
requirements:

» phase-accurate discretization of the convective terms
» high resolution for regions close to the solid wall

» correct outflow boundary conditions that remain non-
reflective even in the presence of nonlinear wave interaction.

The first two requirements can be met by use of high-order
finite differences and fully implicit time-marching, and the
third by using a buffer domain [5] in which a modification
to the Navier-Stokes cquations is used. A buffer domain is
an clfective method for treating the outflow boundary con-
ditions, but only if the buffer domain is kept to a minimum
size. The present work gives a new specification for the out-
flow boundary condition on a staggered grid that uses a
buffer domain which can be shorter than one wavelength,
without any induced reflection in the physical domain.

As in our earlier work, the multigrid method based on
distributive relaxation [6] is applied for accelerating the
convergence process. Since the grid used for channel flow is
highly anisotropic, a semi-coarsening multigrid algorithm
based on line distributive relaxation is developed to achieve
optimal multigrid efficiency. '

2, GOVERNING EQUAT[ONS AND
LINEAR SOLUTIONS

The two-dimensional, time-dependent, incompressible
Navier—Stokes equations, which are nondimensionized by
the channel half height, /1 and the centerline velocity, U, are
considered as the governing equations for planar channel
flow (Fig. 1):

o duuw due 1 (d*n Bu\ 0P
—t ottt o=V, (1)
dt dx  dr Rel\ax? av dx
fJn+.r)mJ+r]m: | 0_3u+£7_2_1_} +r.7_i’_0 (2"
- ox  dy Re\ax® o¥t) oy
du O
4%, 3
ax oy (3)
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FIG. 1. Planar channel flow.

where u and v are velocity components in the x- and p-direc-
tions, respectively; P is the pressure; and Re is the Reynolds
number based on the centerline velocity {7 of mean flow,
channel half-width A, and viscous parameter v:

Re = Uh/v. (4)

In Egs. (1)-(3), the velocity vector and pressure, respec-
tively, can be decomposed into their means, ¥V, and P,, and
fluctuating parts, V' and P’,

V= Vo(xa »+VYix ()’

(5)
P=P,+ F.
Here, V, and P, are based on Poiseuiile flow:
Volx, p)={(1—»0),
(6)

2
Py=—— const.
o Re x4+

Using the above notation, the boundary conditions can be
described as

Vix,y=1£1,1)=0,
Vo(x=0,)=(1 — y30), (7)
V'(x=0,y, t)=¢Real{V (y)e =},

where ¢ is the amplitude of the perturbation velocities; V.,
is the complex velocity vector calculated from the spatial
eigenfunction of the Orr—Sommerfeld equation correspond-
ing to the real frequency, w,: i=./ —1; and Real stands for
the real part of a complex number. The outflow boundary
conditions are not given here but will be discussed later in
this paper.

For small g, the linear theory (Orr-Sommerfeld equation}
provides a solution to the governing equations, which can
be written as

V' =ge ™% Real {V (p) e**r¥—er)} (8)

where o =, + i, is the least damped spatial eigenvalue of
the Orr-Sommerfeld equation for a given Re and w .

The Orr-Sommerfeld equation that governs the linear
stability of parallel shear flow may be written as

2
[(;722—&2) —iRe {(auo—wk)

5 :
x(%—az)—aué’ﬂé—@ (9

with boundary conditions

¢lx, —1)=¢(x, 1})=¢"(x, —1)=¢'(x,1)=0.

Here, ¢ stands for the eigenfunction of disturbed stream
functions, uy=1— y* and u, represent the mean flow
velocity profile and its second derivative, respectively. Then
the stream function () is given by

¥ =¢ Real{g(y) &> “r}, (10)

and the perturbation velocities can be obtained from (10) as

u' =g Real{¢'(p) e~ om0}

. (n
v’ =g Real{ —iag{y) "=~ “a0},
Let
#“(y)=or(¥) +ig1(y)=¢"(y), (12)
#°(y) = ¢r(¥) +id1(y) = ~iag(y).
Then the linear solution can be written as
u' =ge (g cos{agx — g}’
— @7 sin(ag x —wgt)), 13)

’

v'=ge” (P} cos{agx —wgt)

— Py sin{og x — wgrt))

The linear sofution will provide an inflow boundary condi-
tion and will be used to check the accuracy of the numerical
results of our tests.

The particular problem chosen here for study uses
Re=5000 and ey =0.330017. For these parameters, the
Orr-Sommerfeld solution, which is obtained by a spectral
method with high order Chebyshev polynomials, gives
2= 1.15574i0.0106 as a least-damped eigenvalue. lts
eigenfunction is depicted in Fig. 2.
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3. GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS IN PERTURBATION FORM

According to {5), we can write the primitive variables in
perturbation form:

u=1y+ U, v=1vy+0, P=Py+P. (14)

Substituting (14) into Eqs. (1), (2), and (3), we may rewrite
the governing equations in perturbation form:

@_Fauou*_@_i_@L(@ az_u)
2T ox Tox Ty Rela T3y

p 30 O

dy ax

@+au“0+§ﬂ+@ (15)
at dx  ax oy

_L(a_ha_lv L

Re\dx? &7 +6y_ ’
o oo _
ox dy

Here, for simplicity, we drop the prime notation, so that u,
v, and P actually now stand for the perturbation variables
u', v', and P’. The boundary conditions for » and v on the
solid wall are simply

ulx, =1, )=ov(x, —1,6)=0,
(16)
ulx, 1, t)y=uv(x, 1, ) =vix, 1, t)=0.

Since a staggered grid is used {see Fig. 3}, we do not need to
specify P at the solid wall where » = 0.
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FIG. 3. Staggered grid for channel flow.

The inflow boundary conditien is specified by the linear
solution for the given perturbation mode. Here, the
u-component is given at x=0 and the p-component is
given at x = — Ax/2:

(0, y, 1) = e[ @y cos(wg 1} + #] sin{wg 7)],

4 4
v (— TX, ¥ z) = g2 [q}; cos (—ocR TX— cuRt)

. Ax
— ¢7 sin (—aRT—thﬂ.

The outflow boundary condition will be discussed in
Section 5.

(17)

4, FOURTH-ORDER FULLY IMPLICIT
FINITE DIFFERENCE SCHEME

We use a uniform staggered grid for our problem (Fig. 4).
As in the earlier work, we use a second-order backward
Euler difference in the time direction,

o 371 -4t + 17! 2
PP 241 +0(4r7),

where, ¢ stands for generic variables.

To minimize the possible phase errors and to achieve
higher accuracy, a fourth-order central difference in space is
applied to discretize (15). Using

80|  —Bii2+8i1— 861+, )
ox|, 124 + O(d4x?), (18)
6;452 _ — @i+ 160, — 300, + 164, | — @ _»
ox?; 12457

+ 0(d4x"), (19)
o9 _ — @i+ 270, — 2T+ ¢,
0X iy 172 24A4x

+ O0(d4x*) (20)
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FIG. 4. Neighbor points for #-equation.

to discretize all spatial terms in (15), we obtain the
difference scheme written in general form:
Agptiget Agup+ Ay + Appitpp + Ayniiyy
+ Ayt Actis+ Agetigs— Aptip+ Cyp P
+CwPy+CePpe—CpPp=3Su, (21)
Bupvpe+Beoe+ Bytty+ Buytuwy + Byyowy + Byiy

T Bsvg+ Bssvss— Bpvp+ Dss Pss+ D P

+DyPy—D,P,=Sv, (22)
Fpptigp+ Feupg+ Fpuy— Foup+ Guyoyn+ Gty
+GsvS_GPUP=Sm. {23)

Here,
Upp=U;iy2 s
Up=Uiy gy
Uy =W 1 j»
Uy =U; 2 j»

and similarly for v and P. Thus,

1
App= — . ) .
EE= T 3R ax T 12dx Mies T Mo
4 2
ESIRe dx? 34y Vet T o)
Ayt (
w—3ReAx2+3Ax Uimrj ¥ touy),
o 1 1
WS T Re vt Tadx -2t e
11 1
T .
MW T Re 124y T 124y U
1 4 2

N=E63Ay2_37yv"’

581/106/1-7

—L 4 -+ 2 v
ST Rel3dy? 34y ¢

PR 1
ST T Re 1247 124y

L3 s
#7241 2Re\dx?  Ay?)’

Ezﬁ!
Ciw=Cr=gor—,
Cow _ZTIAE’
Su=_—m‘—%j;—uzi—2ijp. (24)

Here, the lower casc subscripts denote the approximate
value of v at the points associated with u, which need to be
evaluated by high-order interpolation (see Fig. 5). For the
interior points (4 < j<nj—3):

U = (90 ;40 t 002 h Ui a3 T2 ja2)
S CHIPTE & FEPUIUE S TR S ISPy £V
0, =00 st U et 0 g2t )

— W2 Vi 253t Uipy;t Uit +3))/32,
Upz(g(vi‘j+vi,j+l+Ui71,j+l+vi—i_j) (25)
— (0 s, U a0 ot Ui e 2) )32,

Us=(9(vj,j—1+Ui,j+vi—l.j+vi‘l.j—l)
_(Ui—Z,j—2+vi—2‘j+1+vi+l.j—2+vi+l.j+l))/32:
Vo =MD j_ 2+ 0 o F 0 o Vo 2)
— (Vg 3 0ig T i3 i ))/32

We need special treatment when j=nj— 3 or j=4.

On the solid wall boundary, we change the y-direction
difference to second order and maintain fourth order in the
x-direction. Then, the truncation error is O{dx* + 4y?).

| }

I [
Vi-2,j4+2 Vi 1,j+1 Ui, 541 Vit1,j+2
t
! I
Up
t ¢
I
Yig,j-1 Vi-1,5 Yij Vit1,j-1
t t

\ |

F1G. 5. Fourth-order approximation for v at a w« point (interior
points).
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5. OUTFLOW BOUNDARY TREATMENT

To avoid reflection of the outgoing waves, we use the
so-called buffer domain, which is added at the outflow
boundary. Thus, the whole domain contains two parts, the
physical domain and the buffer domain (Fig. 6).

Let b and by, denote the buffer functions for velocities
and the Reynolds number, respectively. The governing
equations can then be rewritten as

Gu + Gtgt |, Ottg Oug | O
ar - dx dy dx dy
by Au oP
—_ < —_ _ — 0 2
Re (b At ayl) ax 20)
G duov  uv | duo
ot ox  éx  dy
br d% &% cP
—=b—S+—=}+-—=0, 27
( ox? 6,1}‘) dy 27
Ju  dv
I 28
ax + gy %)
where
tanh{L g — x)
—_— L sical g ‘-<-. Lrola *
b(x) = tanh(Lbuf]’er) physient * ]
1, 0 g X "-<- Lphysical;
49 2
L? (x— Lphysical) +1, Lphysica' $x S Lo,
bke(x) - buffer
1’ O-<..x‘-<-.Lphysical'

Note that the solution in the buffer domain is not consistent
with the physics and that, for efficiency, the buffer domain
should be as short as possible.

A successful treatment for the outflow boundary points
has been developed on staggered grids, which only needs a
very small buffer domain, in fact, shorter than one T-S
wavelength. The treatment may be described in two steps
{Fig. 6):

1. Update u,, ; by equations of mass conservation after
each relaxation

vt s )
n+1__,.n ni—1.j+1 ni—1,
uni,,l‘ _um‘-—l,j_ Ay J-Ax. (29)
2. Update v, , by the assumption that
s OY P
v
i = or Uni-,:'l =200 ;= U s (30)

6. LINE DISTRIBUTIVE RELAXATION

The discretization of the time-dependent incompressible
equations {1)—(3) may be writien in brief as

thu + 5\'P = 0’
Qv +6,P=0, (31)
o.u+6,v=0,

where Q. =87 +&d, + 66y — (1/Re) 4, 67 is the back-
ward difference operator, &, and J, are central difference
operators, and 4, is a discrete Laplacian. We rewrite (31) in
matrix form:

th 0 5)( u fl
O th éy v = fz
5, 4, 0] [P

(32)

The problem with system {32} is that the third equation
causes trouble for conventional iterative solvers, which
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usually fail to converge due to lack of matrix diagonal
dominance. The basic idea behind distributive relaxation is
to introduce a preconditioner to improve (32). To explain
this, we use new variables, w1, w2, and w3, defined by the
relation

u wl 1 0 —6,.][wl
v =M w2|=10 1 =4 ||w2|; (33)
P w3 0 0 Q. w3
then, applying the relation to (32} yiclds
ch 0 5): H-
0 th 5y v
6, 6, 0 P |
Qr.ﬁ 0 6.':— 10 - 5.\' wl
= 0 Q. 6, 0 1 —é, w2 {34)
o, o6, 0] L0 0 Q@ w3
Thus, (34) is related to the linear system
O, 0 0 wl f1
0 Qu O w2 l=|f2 (35)
6, o, —d, w3 3

The point here is that (35) is easily solved by conventional
iterative methods. However, the traditional distributive
relaxation works very well for isotropic problems, but meets
difficulties in the presence of anisotropy. For our applica-
tions, Ay <€ Ax, which yields exireme anisotropy, and the
convergence properties of standard distributive relaxation
quickly degenerate. A line distributive relaxation scheme
has been developed in this work which successfully over-
comes the difficulty with anisotropic grids. Consider the
original system,

Agupg+ Apruy+Ayuy+ Agug— Aptip
Py—Pp

Su, 36
Ax u (36)

Beog+ Byvy+ Byvy+ Bgvg— Bpup

Ps—P,
15 ‘F_g§

+ ==, (37)
Le—Bp 2002 S 38
Ax Ay - ’ (38)

the procedure for a y-line distributive relaxations can be
described as follows:

1. Freezing P, perform y-line Gauss—Seidel relaxation
on (36) to obtain a new u.

2. Freezing P, perform p-line Gauss—Seidel relaxation on
(37) to obtain a new v.

3. For all grid cells (Fig.7) on each p-line in term,
modify all velocities simultaneously to satisfy the continuity
equations. Referring to Fig. 7, we have

(u2+351)—(u1w—ﬁ51)+(v"+51 —8,)—0'

= Sm!
Ax Ay "

(39)

in cell I. Similarly, we have five equations corresponding to
the continuity equation on five neighboring cells. The five
unknowns, d,, 8,, 85, d,, and d, are thus determined by this
system. The v and v are then updated on all five cells:

ul. —ul 4+ B8,
wh, —ul,— B8, (40)

UII*—UII+51*52,

4, Modify the pressure in each cell in turn to satisfy the
momentum equation. In cell I, modify P, by using the
x-momentum equation:

Pre P+ Py, (41)
where
5p, - Art A Bo,
Ce
vaI _0
i
u&—ﬁés__’ OPV __.ug+,665
'UV+64—55
i
I .
ulf -8, | Pv | Wl + 86,

[
i + 83— 8,
?

Py
o
oM 4 6, — 6y

H
\

Wlff — 865 | | ull 4 55,

'H.Hr*ﬂ6z__— OP” _’ILIEI+ﬁ62
U“’ =+ 51 - 6;
t
[
ul, —Bb_| OPI __’ué-l-ﬂ&
Tv" =0
I

FIG. 7. Line distributive relaxation.
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In cell II, modify Py; by using the y-momentum equation:

Ppe—Pu+déP,, (42)
where
8Py = Bel0: = 0:) 5P,
P
The modification at other points is given by
PP, +épP, (43)
where
op,= B0z 20 | 3P, j=2,3.4.5

I DP

7. SEMI-COARSENING MULTIGRID ALGORITHM

To solve the large scale discrete system that arises at each
time step from the fuily implicit time-marching scheme, con-
ventional relaxation methods are much too inefficient. To
obtain optimal efficiency, we use a multigrid scheme based
on distributive relaxation. Because of the high degree of
anisotropy caused by our grids, a semi-coarsening scheme
(coarsening in y-direction only, see Fig. 8) is applied. In
Fig. 8, u”, v, and P* represent values of fine grid points and
u™®, v¥ and P? represent values of coarse grid points.

For simplicity of discussion, we consider only the two
grid case as depicted in Fig. 8. We use a full approximation
scheme (FAS) to accommodate nonlinearities. A two-level
FAS algorithm for an equation of the form

Lyuy=f,

may be described loosely as follows:
(i) relax on Lyu, = f,,
(it) solve Lyyuz, = Lopd F'1ts+ T3 fi— Lyuy),

(i) replace u, « u, + 4, {tan — I37u,).
" K] N ) ) R N R
i il ) . ot FETTPT O Fd ) Sidrd T
i | \ 1 | I | 1
LT T Ty LT L4
N i i Y b N 4
bt P g ? d * g
He 0 4= g == 0 4+ 0 4+ O —= & —= Q —F O —+
) #t N ] # 3 # ¥
i i 1 | i i | |
e 6 1+ 0 —= O 4+ G —+ @ —+ C —f> O —t= O —¢
3 Y 5 5 3 Y 5
b * g r * g * b
—H o -t © le O —» O —» 0 —+ 0O —» © —t= O —H
AN S S B
o PP yh | b o P u ‘ o2

FIG. 8. Two-level staggered grid.

The notation we have introduced includes the difference
operators L, and L,,, the restriciion operators I3 (for
the approximation) and I7* (for the residual), and the
interpolation operator 7%,. We describe these symbols in
more detail as follows.

Relaxation on the coarse grid requires restriction of the
approximation and residual from the fine grid to the coarser
grid to provide initial guesses and right-hand sides,
respectively. For restriction of the approximation, we use
the stencils

J

1) [

fool

T#(p):

[ B = N e

1 |

I7(P) :[

B | B3] —

For restriction of residuals, we use the following full-weight-
ing stencils for semi-coarsening grids, which come from the
so-called area law developed in [77. Let Ry, Rv, and Rm
denote the residual of x-momentum, y-momentum, and
continuity equations, respectively; we obtain

ri
I2#(Ru) i}
L2
1
4
I7(Rv):| 31,
1
4
rL
MRm): LZI]
2

After relaxation on the coarse grid, we interpolate the
corrections from the coarse grid up to the fine grid:

Uy — Uy + 1;};(”)(“2# - 1’21/1(“] Uy )5
Uy Uy + Ig;,(”)(vzh - Iih(v) Uy),

Ph‘—Ph"'[g;,(P)(Pz;;—If,h{P)Ph]-

(44)

h
e mll er
o— O ph
’l.t’.‘LL P
Un l
o Q

o

L e

FIG. 9. Bilinear interpelation for , v, and P.
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FIG. 10. Convergence history of semi-coarsening multigrid method.

Here we use bilinear interpolation, given by the following
stencil (Fig. 9):

37 1
1 (u): |:§ and |:§:|,
4] 4
0_ 1
ey 1] and H
0 F
37 1
I5(P): [% and |:%]
7 F

Both semi-coarsening and line distributive relaxation can
handle anisotropy effectively when the weaker directions are
known. However, when these directions are unknown, semi-
coarsening in one direction coupled with line distributive
relaxation in the other direction is more robust, and it is
able to achieve optimal multigrid efficiency for general cases
of anisotropy.
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FIG. 11, Comparison of the numerical and theoretical solutions at
1=12T numerical solution; < theoretical solution; computational
domain: 5 T-8 wavelength physical + 1 wavelength buffer; grids: 192 x 64;
scheme: fourth-order finite difference.

8. COMPUTATIONAL RESULTS

Let Re = 5000 and w = 0.33017. For these parameters, the
Orr—Sommerfeld solution gives o= 1.1557+/0.0106. The
perturbation amplitude is set to e = 1.2 x 10~%. The channel
length s set to five Tollmien—Schlichting (T-S) wavelengths
and one wavelength buffer domain is added to the rear of
the channel. Thus, the total length of the computational
domain is six T-S wavelengths. The grid used in this work

FIG. 12. Disturbance vorticity contours for the first three T-S wavelengths of the physical domain; contour intervals = 10 =3
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FIG. 13. Disturbance streamfunction contours for the first three T-S wavelengths of the physical domain; contour intervals = 5 x 103,

is 192 x 64. Therefore, the grid for each T-S wavelength is
32 x 64. The grid is anisotropic with 4x=0.1699 » Ay =
0.03125. To examine the efficiency of semi-coarsening multi-
grid, a comparison of the convergence histories of multigrid
and single-grid relaxation at one time step is depicted in
Fig. 10. The code requires about 36 us per physical grid
point per time step on the CRAY-YMP and about 70 us on
the CRAY2 at NASA/Langley Research Center. This
is comparable to [8], which requires about 100 us per
physical grid point per time step on CRAY2.

Figure 10 shows the convergence rate of the semi-coars-
ening muitigrid method, which is about 0.04 per V(2 2)
cycle, much better than the depicted performance of single-
grid relaxation. The streamwise and the normal com-
ponents, u and p, of the perturbation velocity after 12 T-§
periods are compared with the theoretical solution given by
the linear theory at a vertical position close to the lower wall
{y=—0.125 for v and y = —0.119375 for u), see Figs. 11a
and b, respectively. The excellent agreement in both
amplitude and phase between our computational results
and the theoretical solution was observed in the physical
domain. The relative L, norms for both u and v {defined as
llae — it o/ l1#%) > and [|o — &[|+/|/ 5] ;, respectively, where u and
v are numerical solutions, and i and ¢ are theoretical solu-
tions} in the physical domain are 0.063 and 0.061, respec-
tively, for the 192 x 64 grid. Figures 12 and 13 give the
distribution of the respective disturbance vorticity and
streamfunction at different times, showing that no reflection
was observed in the physical domain. The results are, of
course, poor near the outflow boundary, but they are
located in the buffer domain and therefore are ignorable.

9. CONCLUDING REMARKS

» The fourth-order and fully implicit time-marching
scheme on a staggered grid is highly accurate for spatially
evolving problems.

+ Semi-coarsening multigrid and line distributive relaxa-
tion is very efficient, with a convergence rate of about 0.04
per ¥(2, 2) cycle, even in the presence of strong anisotropy.

» The outflow boundary condition proposed here for
staggered grids successfully minimizes the length of the
buffer domain and eliminates wave reflection.
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